
KDM-RE: A Model-Driven Refactoring Tool for KDM
Rafael S. Durelli1, Bruno M. Santos2, Raphael R. Honda2,

Márcio E. Delamaro1 and Valter V. de Camargo2

1Computer Systems Department University of São Paulo - ICMC
São Carlos, SP, Brazil.

2Computing Departament
Federal University of São Carlos - UFSCAR

São Carlos, SP, Brazil.

{rdurelli, delamaro}@icmc.usp.br1,

{valter, bruno.santos, raphael.honda}@dc.ufscar.br2

Abstract. Architecture-Driven Modernization (ADM) advocates the use of mod-
els as the main artifacts during modernization of legacy systems. Knowledge
Discovery Metamodel (KDM) is the main ADM metamodel and its two most
outstanding characteristics are the capacity of representing both i) all system
details, ranging from lower level to higher level elements, and ii) the dependen-
cies along this spectrum. Although there exist tools, which allow the application
of refactorings in class diagrams, none of them uses KDM as their underlying
metamodel. As UML is not so complete as KDM in terms of abstraction lev-
els and its main focus is on representing diagrams, it is not the best metamodel
for modernizations, since modifications in lower levels cannot be propagated to
higher levels. To fulfill this lack, in this paper we present a tool that allows the
application of seventeen fine-grained refactorings in class diagrams. The main
difference from other tools is that the class diagrams uses KDM as their under-
lying metamodel and all refactorings are applied on this metamodel. Therefore,
the modernizer engineer can detect "model smells" in these diagrams and apply
the refactorings.

1. Introduction
Architecture-Driven Modernization (ADM) is an initiative which advocates for the appli-
cation of Model Driven Architecture (MDA) principles to formalize the software reengi-
neering process. According to the OMG the most important artifact provided by ADM is
the Knowledge Discovery Metamodel (KDM). KDM is an OMG specification adopted as
ISO/IEC 19506 by the International Standards Organization for representing information
related to existing software systems. KDM is structured in a hierarchy of four layers; In-
frastructure Layer, Program Elements Layer, Runtime Resource Layer, and Abstractions
Layer. We are specially interested in the Program Elements Layer because it defines the
Code and Action packages which are widely used by our tool. The Code package defines
a set of meta-classes that represents the common elements in the source-code supported
by different programming languages such as: (i) ClassUnit and InterfaceUnit
which represent classes and interface, respectively, (ii) StorableUnit which illus-
trates attributes and (iii) MethodUnit to represent methods, etc. The Action package
represents behavior descriptions and control-and-data-flow relationships between code



elements. Refactoring has been known and highly used both industrially and academi-
cally. It is a form of transformation that was initially defined by Opdyke [Opdyke 1992]
as “a change made to the internal structure of the software while preserving its external
behavior at the same level of abstraction”. In the area of object-oriented programming,
refactorings are the technique of choice for improving the structure of existing code with-
out changing its external behavior [Fowler et al. 2000]. Refactorings have been proved to
be useful to improve the quality attributes of source code, and thus, to increase its main-
tainability. It is possible to identify several catalogs of refactoring for different languages
and the most complete and influential was published by Fowler in [Fowler et al. 2000].
Nowadays, there are researches been carried out about apply refactoring in model instead
of source code[Ulrich and Newcomb 2010]. Nevertheless, although ADM provides the
process for refactoring legacy systems by means of KDM, there is a lack of an Integrated
Development Environment (IDE) to lead engineers to apply refactorings as such exist
in others object-oriented languages. In the same direction, Model-Driven Modernization
(MDM) is a special kind of model transformation that allows us to improve the structure
of the model while preserving its internal quality characteristics. MDM is a considerably
new area of research which still needs to reach the level of maturity attained by source
code refactoring [Misbhauddin and Alshayeb 2012].

In order to enable MDM in the context of ADM, refactorings for the KDM meta-
model are required. In this context, in a parallel research line of the same group, we
developed a catalogue of refactorings for the KDM [Durelli et al. 2014]. We argue that
devising a refactoring catalogue for KDM makes this catalogue language-independent
and standardized. However, the KDM metamodel was not created with the goal of being
the basis for diagrams, as is the case of UML metamodel. Thereby, in order to make pos-
sible to apply fine-grained refactoring in the KDM metamodel, it is necessary to devise
a way to view the KDM instance graphically. Furthermore, although there exist tools,
which allow the application of refactorings in class diagrams, none of them uses KDM as
their underlying metamodel. As UML is not so complete as KDM in terms of abstraction
levels and its main focus is on representing diagrams, it is not the best metamodel for
modernizations, since modifications in lower levels cannot be propagated to higher levels

Hence, the main contribution of this paper is the provision of a plug-in on the top
of the Eclipse Platform named Knowledge Discovery Model-Refactoring Environment
(KDM-RE). This plug-in can be used to lead engineers to apply refactorings in KDM,
which are based on seventeen well known refactorings[Fowler et al. 2000]. The IDE as
well as the adapted catalogue are based on our experience as model-driven engineering.
Also, by using this plug-in the modernizer engineer can visualize the Code package as
an UML class diagram, allowing engineers to detect model smells in that diagram. One
hypothetical case study was developed in order to exemplify the use of the plug-in. This
paper is organized as followed: Section 2 provides the background to fully understand
our plug-in - Section 3 depicts information upon the plug-in KDM-RE and an case study
- in Section 4 there are related works and in Section 5 we conclude the paper with some
remarks and future directions.

2. ADM and KDM
OMG defined ADM initiative [Perez-Castillo et al. 2009] which advocates carrying out
the reengineering process considering MDA principles. ADM is the concept of modern-



Conceptual

Build

Structure

Platform
Event

UIData

Core, 
KDM, 

source

Code

Action

Abstraction 
Layer

Resource 
Layer

Program 
Elements 

Layer

Infrastructure 
Layer

Figure 1. Layers, packages, and separation of concerns in KDM (Adapted
from [OMG 2012])

izing existing systems with a focus on all aspects of the current systems architecture. It
also provides the ability to transform current architectures to target architectures by using
all principles of MDA [Ulrich and Newcomb 2010].

To perform a system modernization, ADM introduces Knowledge Discovery
meta-model (KDM). KDM is an OMG specification adopted as ISO/IEC 19506 by the
International Standards Organization for representing information related to existing soft-
ware systems. According to [Perez-Castillo et al. 2009] the goal of the KDM is to define a
meta-model to represent all the different legacy software artifacts involved in a legacy in-
formation system (e.g. source code, user interfaces, databases, etc.). The KDM provides
a comprehensive high-level view of the behavior, structure and data of legacy information
systems by means of a set of meta-models. The main purpose of the KDM specification is
not the representation of models related strictly to the source code nature such as Unified
Modeling Language (UML). While UML can be used to mainly to visualize the system
“as-is”, an ADM-based process using KDM starts from the different legacy software ar-
tifacts and builds higher-abstraction level models in a bottom-up manner through reverse
engineering techniques. As outlined before, the KDM consists of four abstraction layers:
(i) Infrastructure Layer, (ii) Program Elements Layer, (iii) Runtime Resource Layer, and
(iv) Abstractions Layer. Each layer is further organized into packages, as can be seen in
Figure 1. Each package defines a set of meta-model elements whose purpose is to repre-
sent a certain independent facet of knowledge related to existing software systems. We
are specially interested in the Program Elements Layer because it defines the Code and
Action packages which are widely used by our catalogue. The Code package defines a set
of meta-classes that represents the common elements in the source code supported by dif-
ferent programming languages. In Table 1 is depicted some of them. This table identifies
KDM meta-classes possessing similar characteristics to the static structure of the source
code. Some meta-classes can be direct mapped, such as Class from object-oriented lan-
guage, which can be easily mapped to the ClassUnit meta-class from KDM.

3. Refactoring for KDM by means of KDM-RE
This sections describes KDM-RE. In Figure 2 we depicted the main window of our plug-
in. For explanation purpose, we highlight two main regions, i.e., a©, and b©. It supports 17



Table 1. Meta-classes for Modeling the Static Structure of the Source-code
Source'Code*Element* KDM*Meta'Classes*

Class* ClassUnit*
Interface* InterfaceUnit*
Method* MethodUnit*
Field* StorableUnit*

Local*Variable* Member*
Parameter* ParameterUnit*
Association* KdmRelationShip*

*

refactorings adapted to KDM. These refactorings are based on some fine-grained refactor-
ings proposed by Fowler [Fowler et al. 2000]. All the refactorings are shown in Table 2.
We chose the Fowler’s refactorings because they are well known, basic and fine-grained
refactorings. Please, not that KDM-RE uses MoDisco1 once it provides an extensible
framework to transform an specific source-code to KDM models. In Figure 2 is presented

Table 2. Refactorings Adapted to KDM
Rename Feature Moving Features Between Objects Organing Data Dealing with Generalization 
Rename ClassUnit Move MethodUnit Replace data value with Object Push Down MethodUnit 

Rename StorableUnit Move StorableUnit Encapsulate StorableUnit Push Down StorableUnit 
 
 

Rename MethodUnit 

Extract ClassUnit Replace Type Code with ClassUnit Pull Up StorableUnit 
 

Inline ClassUnit 
Replace Type Code with SubClass Pull Up MethodUnit 

 
Replace Type Code with State/Strategy 

Extract SubClass 
Extract SuperClass 
Collapse Hierarchy 

!

Figure 2. Snippets KDM-RE’s Interface

just a snippet of KDM-RE. Starting from the popup menu named “Refactoring KDM”, in
this model browser, see Figure 2 a©, either the software developer or software modernizer
can interact with the KDM model and choose which refactoring must be carried out in
the KDM. In the region a© can be seen all 17 refactorings that have been implemented in
KDM-RE. For illustration purposes only we drew rectangles to separate the refactorings

1http://www.eclipse.org/MoDisco/



into three groups. The black rectangle represents refactorings that deal with generaliza-
tion, the blue rectangle stand for refactorings to organize data and the red one symbolize
refactoring to assist the moving features between objects.

The region b© on Figure 2 shows an UML class diagram. This diagram can be
used before to apply some refactorings to assist the modernizer to decide where/when to
apply the refactorings. This UML class diagram also can be useful as the modernizer per-
forms the refactorings in KDM model. For instance, changes are reproduced on the fly in
a class diagram. We claim that the latter use of this diagram is important once it provides
an abstract view of the system, hence, the modernizer can visually check the system’s
changes after applying a set of refactorings. Furthermore, in the context of modernization
usually the source-code is the only available artifact of a legacy system. Therefore, creat-
ing an UML class diagram makes, both the legacy system and the generated software to
have a new type of artifact (i.e., UML class models), improving their documentation.

3.1. Case Study

In this section, we motivate KDM-RE by analyzing one hypothetical case study. This
case study is a small part of the university domain. Figure 2 b© (left side) shows a class
diagram used for modeling a small part of the university domain. In an university there
are several Persons, more specifically Professors, their Assistants, and Students. Each
Person has RG, CPF, and address (of type String). Moreover, classes Professor, Assistant,
and Student have an attribute name of type String each. The software modernizer or the
software developer found out by looking at the UML class diagram (see Figure 2 b© left
side) this redundantly, i.e., equal attributes in sibling classes. Therefore, he/she must
apply the refactoring “Pull Up Field’. Similarly, he/she also found out by looking at the
UML class diagram that one class is doing work that should be done by two or more.
For example, he/she found that the attributes RG and CPF should be modularized to a
class. Similarly, it is necessary to provide more information about they address, such as
number, city, country, etc. Therefore, he/she must apply the refactoring “Extract Class”
to the attributes “RG”, “CPF” and “rua”. Due space limitation it is depicted just the
extraction of the attributes “RG” and “CPF”. The first step is to select the meta-class that
he/she identified as a bad smell, i.e., the meta-class to be extracted into a separate one.
This step is illustrated in Figure 3(a).

After selecting the meta-class, a right-click opens the context menu where the
refactoring is accessible. After the click, the system displays the “RefactoringWizard”
to the engineer, Figure 3(b) depicts the Extract Class Wizard. In this wizard, the name
of the new meta-class can be set. Also a preview of all detected StorableUnits and
MethodUnits that can be chosen to put into the new meta-class. Further, the engineer
can select if either the new meta-class will be a top level meta-class or a nested meta-class.
The engineer also can select if the KDM-RE must create instances of MethodUnits to
represent accessors methods (gets and sets). Finally, the engineer can set the name of the
StorableUnit that represent the link between the two meta-classes (the old meta-class
and the new one). After all of the required inputs have been made, the engineer can click
on the button “Finish” and the refactoring “Extract Class” is performed by KDM-RE.

As can be seen in Figure 3(c) a new instance of ClassUnit named “Document”
was created - two StorableUnit from “Pessoa”, i.e., “rg” and “CPF” were moved



(a) (b)

(c)

Figure 3. Extract Class Wizard

to the new ClassUnit - instances of MethodUnits were also created to represent
the gets and sets. In addition, the instance of ClassUnit named “Pessoa” owns a new
instance of StorableUnit that represent the link between both ClassUnits. Due
space limitation the other StorableUnits of ClassUnit named “Pessoa” are not
shown in Figure 3(c). After the engineer realize the refactorings, an UML class diagram
is created on the fly to mirror graphically all changes performed in the KDM model, see
Figure 2 b© right side.

4. Related Work

Van Gorp et al. [Gorp et al. 2003] proposed a UML profile to express pre and post con-
ditions of source code refactorings using Object Constraint Language (OCL) constraints.
The proposed profile allows that a CASE tool: (i) verify pre and post conditions for the
composition of sequences of refactorings; and (ii) use the OCL consulting mechanism
to detect bad smells such as crosscutting concerns. Reimann et al. [Reimann et al. 2010]
present an approach for EMF model refactoring. They propose the definition of EMF-
based refactoring in a generic way. Another approach for EMF model refactoring is pre-
sented in [Thorsten Arendt 2013]. They propose EMF Refactor 2, which is a new Eclipse
incubation project in the Eclipse Modeling Project consisting of three main components.
Besides a code generation module and a refactoring application module, it comes along
with a suite of predefined EMF model refactorings for UML and Ecore models.

2http://www.eclipse.org/emf-refactor/



5. Concluding Remarks
In this paper is presented the KDM-RE which is a plug-in on the top of the Eclipse
Platform to provide support to model-driven refactoring based on ADM and uses the
KDM standard. More specifically, this plug-in supports 17 refactorings adapted to
KDM. These refactorings are based on some fine-grained refactorings proposed by
Fowler [Fowler et al. 2000]. As stated in the case study the engineer/modernizer by using
KDM-RE can apply a set refactorings in a KDM. Also, on the fly the engineer can check
all changes realized in this KDM replicated into a class diagram - the engineer can visu-
ally verify the system’s changes after applying a set of refactorings. In addition, usually
the source code is the only available artifact of the legacy software. Therefore, creating an
UML class diagram makes, both the legacy software and the generated software to have
a new type of artifact (i.e., UML class models), improving their documentation. Also, we
claim that as we have defined all refactoring based on the KDM, they can be easily reused
by others researchers.

It is important to notice that the application of refactorings in UML class diagrams
is not a new research as stated before. However, all of the works we found on literature
perform the refactoring directly on the UML metamodel. Although UML is also an ISO
standard, its primary intention is just to represent diagrams and not all the characteristics
of a system. As KDM has been created to represent all artifacts and all characteristics
of a system, refactorings performed on its finer-grained elements can be propagated to
higher level elements. This propitiates a more complete and manageable model-driven
modernization process because all information is concentrated in just one metamodel.
In terms of the the users who uses modernization tools like ours, the difference is not
noticeable; that is, whether the refactorings are performed over UML or KDM. However,
there are two main benefits of developing a refactoring catalogue for KDM. The first one
is in terms of reusability. Other modernizer engineers can take advantage of our catalogue
to conduct modernizations in their systems. The second benefit is that, unlikely UML, a
catalogue for KDM can be extended to higher abstractions levels, such as architecture and
conceptual, propitiating a good traceability among these layers.

We believe that KDM-RE makes a contribution to the challenges of Software
Engineering which focuses on mechanisms to support the automation of model-driven
refactoring. Future work involves implementing more refactorings and conducting exper-
iments to evaluate all refactorings provided by KDM-RE. Doing so, we hope to address a
broader audience with respect to using, maintaining, and evaluating our tools. Currently,
KDM-RE generates only class diagrams to assist the modernization engineer to perform
refactorings, however, as future work, we intend to: (i) extend this computational sup-
port to enable the achievement of other diagrams, e.g., the sequence diagram, (ii) perform
structural check of the software after the application of refactorings; and (iii) carry out the
assessment tool, as well as refactorings proposed by controlled experiments. A work that
is already underway is to check how other parts of the highest level of KDM are affected
after the application of certain refactorings. For example, assume that there are two pack-
ages P1 and P2. Suppose there is a class in P1, named C1, and within the P2 there is a
class named C2. Assume that C1 owns an attribute A1 of the type C2., i.e., there is an
association relationship between these classes of different packages. P1 and P2 represent
architectural layers, i.e., P1 = Model and P2 = View. Thus, the relationship that exists is
undesirable. When we make a fine-grained refactoring such as moving the attribute A1



of the class C1, it should be reflected to the architectural level, eliminating the existing
relationship between the two architectural layers.

6. Acknowledgements
Rafael S. Durelli would like to thank the financial support provided by FAPESP, process

number 2012/05168-4. Bruno Santos and Raphael Honda also would like to thank CNPq
for sponsoring our research.

References
Durelli, R. S., Santibáñez, D. S. M., Delamaro, M. E., and Camargo, V. V. (2014). To-

wards a refactoring catalogue for knowledge discovery metamodel. In IEEE 15th In-
ternational Conference on Information Reuse and Integration (IRI).

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (2000). Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley.

Gorp, P. V., Stenten, H., Mens, T., and Demeyer, S. (2003). Towards automating source-
consistent uml refactorings. In International Conference on UML - The Unified Mod-
eling Language, pages 144–158. Springer.

Misbhauddin, M. and Alshayeb, M. (2012). Model-driven refactoring approaches: A
comparison criteria. In Sofware Engineering and Applied Computing (ACSEAC), 2012
African Conference on.

OMG (2012). Object Management Group (OMG) Architecture-Driven Modernisation.
Disponível em: http://www.omgwiki.org/admtf/doku.php?id=start. (Acessado 2 de
Agosto de 2012).

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks. Ph.D. Thesis, Univer-
sity of Illinois.

Perez-Castillo, R., de Guzman, I. G.-R., Avila-Garcia, O., and Piattini, M. (2009). On the
use of adm to contextualize data on legacy source code for software modernization.
In Proceedings of the 2009 16th Working Conference on Reverse Engineering, WCRE
’09, pages 128–132, Washington, DC, USA. IEEE Computer Society.

Reimann, J., Seifert, M., and Abmann, U. (2010). Role-based generic model refactor-
ing. In In ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2013). Springer.

Thorsten Arendt, Timo Kehrer, G. T. (2013). Understanding complex changes and im-
proving the quality of uml and domain-specific models. In In ACM/IEEE 16th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoDELS
2013).

Ulrich, W. M. and Newcomb, P. (2010). Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.


